Experimental overview of latest DVCS results

Andreas Mussgiller

for the HERMES collaboration

EINN 2009 30/09/09, Milos Island, Greece

Outline

Access to GPDs

- DVCS and Bethe-Heitler have same final state
- Bethe-Heitler dominates at HERMES kinematics
- Access to GPDs through cross-section differences and azimuthal asymmetries via interference term

$$d\sigma(eN \to e'N'\gamma) \propto |\mathcal{T}_{BH}|^2 + |\mathcal{T}_{DVCS}|^2 + \mathcal{T}_{BH}\mathcal{T}_{DVCS}^* + \mathcal{T}_{BH}^*\mathcal{T}_{DVCS}$$

Azimuthal Asymmetries

Cross-section

 $\sigma_{LU}(\phi; P_B, C_B) = \sigma_{UU} \left[1 + P_B A_{LU}^{DVCS} + C_B P_B A_{LU}^{I} + C_B A_C \right]$

• Beam Helicity Asymmetry $A_{LU}^{DVCS}(\phi) = \frac{(\sigma^{+\rightarrow} - \sigma^{+\leftarrow}) - (\sigma^{-\leftarrow} - \sigma^{-\rightarrow})}{(\sigma^{+\rightarrow} + \sigma^{+\leftarrow}) + (\sigma^{-\leftarrow} + \sigma^{-\rightarrow})} = \frac{1}{D(\phi)} \cdot \frac{x_B^2 t \mathcal{P}_1(\phi) \mathcal{P}_2(\phi)}{Q^2} s_1^{DVCS} \sin(\phi)$ $A_{LU}^I(\phi) = \frac{(\sigma^{+\rightarrow} + \sigma^{-\leftarrow}) - (\sigma^{+\leftarrow} + \sigma^{-\rightarrow})}{(\sigma^{+\rightarrow} + \sigma^{-\leftarrow}) + (\sigma^{+\leftarrow} + \sigma^{-\rightarrow})} = \frac{1}{D(\phi)} \cdot \frac{x_B^2}{Q^2} \sum_{n=1}^2 s_n^I \sin(n\phi)$

Beam Charge Asymmetry

$$A_C(\phi) = \frac{(\sigma^{+\to} + \sigma^{+\leftarrow}) - (\sigma^{-\leftarrow} + \sigma^{-\to})}{(\sigma^{+\to} + \sigma^{+\leftarrow}) + (\sigma^{-\leftarrow} + \sigma^{-\to})} = \frac{1}{D(\phi)} \cdot \frac{x_B^2}{y} \sum_{n=0}^3 \frac{c_n^I}{c_n^I} \cos(n\phi)$$

- Dependence on ϕ in denominator

$$D(\phi) = \frac{\sum_{n=0}^{2} c_n^{BH} \cos(n\phi)}{(1+\varepsilon^2)^2} + \frac{x_B^2 t \mathcal{P}_1(\phi) \mathcal{P}_2(\phi)}{Q^2} \sum_{n=0}^{2} c_n^{DVCS} \cos(n\phi)$$

 Combined BSA & BCA analysis allows separation of DVCS and Interference-Term amplitudes

The HERMES Spectrometer

Gas targets:

- Longitudinally polarized H, D
- Unpolarized H, D, ⁴He, N, Ne, Kr and Xe
- Transversely polarized H

Beam:

- Longitudinally polarized e⁺ and e⁻ with both helicities
- Energy 27.6 GeV

DVCS at HERMES

- Exactly one lepton detected in spectrometer
- Exactly one untracked cluster in calorimeter
- Recoiling proton remains undetected

Exclusivity via missing mass technique $ep \rightarrow e' \gamma X$

Kinematic requirements $0.03 < x_B < 0.35$ $1 \text{ GeV}^2 < Q^2 < 10 \text{ GeV}^2$ $-t < 0.7 \text{ GeV}^2$ $E_{\gamma} > 5 \text{ GeV}^2$

DVCS at **HERMES**

- Associated Bethe-Heitler $ep
 ightarrow e' \gamma \Delta^+$ (12%) is part of signal

New analysis of 1996-2005 data

submitted to JHEP - arXiv:0909.3587

VGG variant with D-term is disfavored by data

2D Binning of Beam Charge Asymmetry

Leading asymmetry amplitudes vs. -t for different x_B ranges

• Can provide additional input to study ξ and -t dependence of GPDs

HERMES DVCS Overview

Beam Helicity Asymmetry on Proton

- VGG bands obtained by varying b_{val} and b_{sea} input parameters
- VGG model predictions overestimate size of asymmetry

Comparison of Proton and Deuteron Data (BCA)

DVCS on Nuclear Targets

- Provides additional information on GPDs and their modification in nuclear matter
- Involves two contributions
 - Coherent: target remains intact
 - Incoherent: nuclear target breaks up
 - Can be separated by cut on -t

Ratios of Leading Beam Helicity Asymmetry Amplitudes

• $A_{LU,A}^{I,\sin\phi}/A_{LU,H}^{I,\sin\phi}$

• Results contradict model predictions of strong A-dependence

HERMES DVCS Overview

Improved Exclusivity: The Recoil Detector

- Installed during 2006/2007
- Two beam helicities
- Two beam charges

- 38M DIS events off Hydrogen (41k DVCS)
- IOM DIS events off Deuterium (7.5k DVCS)

DVCS with Recoil Detector

- "Classic" style HERMES DVCS analysis
 - Exactly one lepton and one photon detected in spectrometer
- Calculate kinematics of recoiling proton
- Look for a correlated track in recoil detector
 - $\Delta \phi = \phi_{measured} \phi_{calculated}$
 - $\Delta p = p_{measured} p_{calculated}$

DVCS candidate event

HERMES DVCS Overview

- HERMES has provided a wide variaty of DVCS results to constrain GPDs
 - Beam charge and beam helicity asymmetries on both proton and deuteron targets

- No nuclear mass dependence of asymmetry amplitudes is observed for nuclear targets
 - Nuclear GPD models
- Transverse target spin asymmetry
 - GPD E, model-dependent constraint on Ju vs. Jd
- Longitudinal target spin asymmetry
 - 🔿 GPD H
- Large data set including information from the recoil detector
 - Improved exclusivity for BSA and BCA
 - Associated Bethe-Heitler can be separated
 - Results can be used to refine DVCS analysis before 2006

Backup

2D Binning of Beam Spin Asymmetry

Leading asymmetry amplitudes vs. -t for different x_B ranges

• Can provide additional input to study ξ and -t dependence of GPDs

Comparison of Proton and Deuteron Data (BSA Interference)

Proton and Deuteron results are compatible for all leading asymmetry amplitudes

Comparison of Proton and Deuteron Data (BSA DVCS)

amplitudes